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Abstract Protein farnesyltransferase (FTase) is very
promising anticancer drug target, with several drugs in
advanced stages of clinical testing. However, in spite of
the thrilling achievements in the development of farne-
syltransferase inhibitors (FTIs) over the past few years,
the farnesylation mechanism remains, to some degree, a
mystery. This work reports the determination and vali-
dation of three sets of molecular mechanical parameters
specifically tailored to accurately account for the very
specific nature of the several Zn coordination spheres
formed during the unclear catalytic pathway of this puz-
zling metalloenzyme, and built on the top of recent
experimental and theoretical results that have dramat-
ically changed the way how the farnesylation mecha-
nism is perceived. Extensive validation studies with 14
FTase crystallographic structures, EXAFS data, DFT,
and QM/MM theoretical calculations are presented.

Keywords Farnesyltransferase · Zinc enzymes · Force
field · Molecular mechanics · Amber

1 Introduction

Protein farnesyltransferase (FTase) is a heterodimeric
zinc metalloenzyme, consisting of a 48 kDa α-subunit
and a 46 kDa β-subunit [1–4], that has been the subject
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of great interest in anticancer research over the last
decade [5–10]. FTase catalyses the addition of isopren-
oid farnesyl from farnesyl diphosphate (FPP), to a cys-
teine residue of a protein substrate containing a typical
–CAAX motif at the carboxyl terminus. In this charac-
teristic motif the C represents the cysteine residue that
is farnesylated, A is an aliphatic amino acid, whereas
X stands for the terminal amino acid residue, usually
methionine, serine, alanine or glutamine [11]. Among
the known substrates for FTase are H-, N-, and K-Ras
proteins, nuclear lamins A and B, the γ subunit of het-
erotrimeric G-proteins, and several proteins involved in
visual signal transduction [12–14].

Interest in FTase was prompted by the finding that
farnesylation is absolutely required for oncogenic forms
of Ras proteins to transform cells [15,17], as mutant Ras
proteins are responsible for about 30% of all human
cancers [18,19]. Examples include pancreatic adenocar-
cinomas (90%), colon adenocarcinomas and adenomas
(50%), lung adenocarcinomas (30%), myeloid leuke-
mias (30%), and melanomas (20%) [20–25]. More than
100 patents describing FTIs have been published since
the year 2000 [7], with several drugs in clinical testing
[8–10,26–30]. In particular, tipifarnib (Zarnestra;
Janssen Pharmaceutica NV) and lonafarnib (Sarasar;
Schering-Plough Research Institute) have already been
evaluated in phase III clinical trials [31,32]. Nowadays,
the development of FTIs as alternative drugs in the
treatment of some diseases caused by pathogens, in
particular malaria [33,38], Chagas disease [39,41], Afri-
can sleeping sickness [42–44], Toxoplasmosis [45] and
Leishmaniasis [39], and as antiviral agents [46] is also a
hot topic of research.

Despite the enormous curiosity surrounding FTase
inhibition and the vast research in the field, several
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fundamental features of the farnesylation and inhibition
mechanisms remain elusive [47]. The key catalytic role
played by the active-site Zn complex has been hindering
a successful application of molecular mechanical meth-
ods in FTase research, since the well-established biomo-
lecular force fields such as CHARMM [48,49], AMBER
[50,51], and GROMOS [52], do not have parameters
capable of an accurate treatment of the several differ-
ent active-site Zn coordination spheres formed. The
development of such parameters is a large step in FTase
research as it will enable the computer-aided molecular
modeling of more specific inhibitors, rationally designed,
with increased activity and potential value in the treat-
ment of cancer, malaria, sleeping sickness, or even with
application as antiviral agents. Furthermore, it will also
promote further insight into the still unsolved catalytic
mechanism of this puzzling enzyme [47], particularly
when in combination with QM/MM methodologies such
as ONIOM [53,54], and the study of the dynamic prop-
erties of FTase and of the complexes resultant from
its association with the several different inhibitors
available.

More than 30 crystallographic structures for FTase
have been published since 1997. These X-ray structures
refer to several different states of the catalytic and inhi-
bition pathways of this enzyme, and to different com-
binations of substrates, non-substrates and inhibitors.
Despite the high number of crystallographic structures
already published doubts remain on the very nature
of the active-site Zn coordination sphere [47]. Only
recently EXAFS [55] results and some high-level theo-
retical studies [56,57] have shed some light on this mat-
ter, by demonstrating the existence of a carboxylate-shift
mechanism, coherent with previous mutagenesis exper-
iments [58], involving Zn ligand Asp297β, both with
ligand entrance (bidentate to monodentate) and with
product exit (monodentate to bidentate), while show-
ing that during the entire catalytic pathway Zn remains
four-coordinated. DFT (B3LYP) calculations, crystallo-
graphic data [59–61], and extended X-ray absorption
fine structure (EXAFS) results [55] were thoughtfully
used in the parameterization, together with new impor-
tant mechanistic facts obtained from several recent stud-
ies [56–65], allowing the development of an effective
parameterization scheme specifically tailored for the
active site of this enzyme.

This works reports the determination and validation
of three sets of parameters, committed to the AMBER
force field [50,51], specifically designed to allow a
reliable treatment of the puzzling enzyme farnesyl-
transferase by the use of molecular mechanical
methodologies for the three different Zn coordination
environments formed during catalysis, comprising a total

of four possible targets for the development of FTase
inhibitors – FTase resting state, binary complex (FTase–
FPP), ternary complex (FTase–FPP–Peptide), and prod-
uct complex (FTase–Product) – thereby covering the
complete mechanistic pathway of this mysterious
enzyme.

2 Methodology

2.1 Parameter development

2.1.1 Atom types

The new parameters are intended to be an extension to
the AMBER force field [50,51]. For this reason, atom
types in conformity with this force field have been
adopted. In order to account for the specificity of the
three different Zn coordination spheres, in terms of
bond lengths, angles and charges, a total of 15 new
atom types were also introduced for Zn and the directly
coordinated atoms in the three different environments.
Figure 1 illustrates the Zn complexes considered and
the nomenclature used. Set 1 represents the active-site
Zn coordination sphere of the enzyme resting state and
binary complex (FTase–FPP). Set 2 represents the Zn
complex in the ternary complex (FTase–FPP–Peptide
substrate), and Set 3 corresponds to the product com-
plex (FTase–Farnesylated product).

2.1.2 Bond and angle parameters

Given the influence of the nature and identity of the lig-
ands of the Zn coordination sphere on the bond-lengths
and angles involving the metal atom, all the bonds con-
taining Zn, and all the angles where Zn was the central
atom were computationally parameterized for each of
the three models. The angles where Zn was a terminal
atom were considered independent of the environment
and hence transferable, and were obtained from other
Zn enzymes in the literature [66,67].

Initial models for the parameterization process were
built from the crystallographic structures with the best
resolution for each state – 1FT1 (Set 1), 1JCR (Set 2),
and 1 KZP (Set 3) [59–61]. Calculations were performed
on the active-site models depicted in Fig. 1, used for the
three different sets of parameters. Conventional mod-
eling of the amino acid side chains was used, that is,
the zinc ligands aspartate, cysteinate, and histidine were
modeled by acetate, methylthiolate, and methylimidaz-
ole, respectively. The zinc-bound farnesylated product
from Set 3 was modeled by the use of a methylthio-
late bonded to the first isoprenoid subunit of FPP. The
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Fig. 1 Zn model complexes considered and nomenclature used
in the parameterization process of the three coordination spheres
formed during the FTase catalytic pathway. Set 1 represents the
active-site Zn coordination sphere of the enzyme resting state
and binary complex (FTase–FPP). Set 2 illustrates the Zn coordi-
nation sphere in the binary complex (FTase–FPP–Peptide), and
Set 3 shows the Zn coordination sphere in the product complex
(FTase–Product)

validity of this type of approaches has been demon-
strated before with success in the mechanistic study of
FTase [56,57], and of several other different enzymes
[67–75].

In the parameterization process the density functional
theory (DFT) with the B3LYP functional [76,77] was
used. DFT calculations have been shown to give very
accurate results for systems involving transition metals

[78], particularly when using the B3LYP functional
[79–81]. For Zn complexes, the superior accuracy of the
B3LYP functional in comparison with Hartree–Fock and
second-order Moller–Plesset perturbation theory has
also been previously demonstrated [69]. Energy mini-
mizations of the models for Sets 1, 2, and 3 were carried
out using the SDD basis set, as implemented in Gaussian
03 [82]. This basis set uses the small core quasi-rela-
tivistic Stoll–Preuss (SP) electron core potentials (also
known as Stuttgart–Dresden) [83,84] for transition ele-
ments. For Zn, the outer electrons are described by a
(311111/22111/411) valence basis specifically optimized
for this metal and for use with the SP pseudopotentials.
C, N, and O atoms are accounted by a (6111/41) quality
basis set, whereas S and H atoms are treated, respec-
tively, by a (531111/4211) and a (31) quality basis sets.
The high-performance of SP pseudopotentials in calcu-
lations involving transition metal compounds, particu-
larly within closed-shell systems, has been previously
demonstrated [85]. This basis set has also been used
before with success in the characterization of the active-
site Zn coordination sphere of FTase [56,57].

For each of the three models a series of semi-rigid
scans were performed starting from the fully optimized
geometry of the model. These scans were performed
by gradually changing one of the parameters (positively
and negatively) and re-optimizing the model, while kee-
ping the new parameter value fixed and the remaining
residues frozen. For example, for the parameterization
of the bond Zn–N(His) in model Set 1, both the aspar-
tate and cysteine residues were kept frozen, whereas the
zinc atom and the histidine residue were optimized for
several Zn–N values around the equilibrium distance.
For the angles where Zn is the central atom the same
type of principles were applied. In the parameterization
of the (Cys)S–Zn–N(His) angle in model Set 1, for exam-
ple, the aspartate residue was kept frozen, while the Zn
atom, the cysteine and histidine residues were optimized
for several S–Zn–N values around the equilibrium angle.
The resulting potential energy curves were fitted by a
least squares method, as exemplified in Fig. 2, for the
Zn–N(His) bond and the (Cys)S–Zn–N(His) angle in
model Set 1. The force constants for the bonds (Kr) and
angles (Kθ ) discussed were calculated by considering the
following Amber force field expressions for the bonding
and angular terms (Ebond and Eangles):

Etot =
∑

system

(
Ebond + Eangles + Etorsion + EVDW

+Eelectrostatic
)

(1)

Ebond =
∑

bonds

Kr(r − r0)
2 (2)
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Fig. 2 Parameterization
examples for bond ZF–NF
and angle NF–ZF–SF, from
Eqs. (2) and (3). Energy
values calculated at the
B3LYP/SDD level from the
models depicted in Fig. 1

Eangles =
∑

angles

Kθ (θ − θ0)
2. (3)

The process was repeated for 4 bonds and 6 angles
for each of the 3 models, representing a total of 30
parameters. The equilibrium values of the bond-lengths
and angles were determined from the optimizations per-
formed with the models presented in Fig. 1. However,
the bond-lengths and angles obtained in other stud-
ies with larger models (that included not only the first
coordination sphere but also other residues in an 8 Å
radius around the zinc atom, ranging from a total of
120–133 atoms) treated following an ONIOM method-
ology [53,54] at the B3LYP/SDD//PM3 level were also
taken into account [56,57]. All quantum mechanical cal-
culations were performed using the Gaussian 03 suite of
programs [82].

2.1.3 Dihedral parameters

All the dihedral parameters involving the Zn–ligand
interactions were set to zero. This approximation rather
simplifies the computational treatment of the system,
and confers a certain degree of flexibility to the active-
site, without compromising the accurate description of
the first coordination sphere of the metal. This proce-
dure has been used with success in the treatment of
several different enzymes that have a metal atom cova-
lently bonded [86–91], and is normally viewed as a stan-
dard approximation when the bonded model is used with
this type of systems [92,93].

2.1.4 van der Waals (VDW) parameters

The VDW parameters for the Zn atom in the three envi-
ronments considered were taken from a set of studies
with the enzyme alcohol dehydrogenase where a bonded
potential was also used [67,94,95] , as VDW parameters
are commonly taken as transferable between roughly
similar environments. Accordingly, for the atoms
directly coordinating to the Zn ion VDW parameters

were assigned from the closest existing AMBER atom
types in the standard AMBER force fields [50,51].

2.1.5 Electrostatic parameters

Restrained ElectroStatic Potential (RESP) charges [96,
97] for the three Zn coordination spheres were derived
at the B3LYP/6–311++G(3df,2pd) level. Although the
standard AMBER force fields [50,51] were parame-
terized with HF/6–31G*, in systems involving metals
B3LYP is considered a far better method to calculate
RESP charges [88], and is commonly used [88,98–101],
as HF/6–31G* generally underestimates much of the
charge transfer effect involving the metal atom [88,99].

In this process, the models used included the α car-
bons in addition to the atoms already considered in the
models described in Fig. 1, in analogy with the param-
eterization performed in the FF94, FF96, FF98, and
FF99 force fields [50]. The models were energy-mini-
mized with B3LYP/SDD as performed for the first set of
models and were build from the same crystallographic
structures. The partial charges for the Cα linking atoms
were obtained from the correspondent amino acids in
the FF99 force field and fixed during the RESP fit pro-
cedure, admitting that no significant charge alterations
due to the metal–ligand interactions take place beyond
the Cα .

2.1.6 Parameterization of the FPP substrate
and the farnesylated peptide product

For the FPP molecule, all atom types were defined in
conformity with the Amber force field, and no new
atom types were introduced (Fig. 3). Bond, Angle, Dihe-
dral, and VDW parameters from the general amber
force field (GAFF) were used. Exceptions were the
CT–CM–CT and CM–CM–CM angles. For these two
angles, force constants were estimated by analogy with
angles involving similar atoms in the GAFF, whereas
equilibrium angle values were taken directly from the
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FPP conformation in the 1JCR X-ray structure [59], the
FTase crystallographic structure with an FPP molecule
with the best resolution in the PDB. RESP charges were
derived using HF/6–31G* in analogy with the GAFF,
as this molecule is not involved in ligand–metal charge
transfer processes.

In the parameterization of the farnesylated prod-
uct, a new atom type (SL) was defined (Fig. 3), weakly
coordinating the product molecule to the Zn atom, as
previously described for the Set 3 model. Parameters
for the CM–CT–SL and CT–SL–CT angles were intro-
duced, with force constant defined as described for the
FPP molecule, and with equilibrium angle values taken
from the 1KZP structure [60] (in the case of CM–CT–SL
angle) and from those determined for the Set 3 model
(ST–CL–ST angle). The dihedrals involving Zn were set
to zero, as performed for parameter Sets 1, 2, and 3.
All other bond, angle, dihedral and VDW parameters
were taken directly from the GAFF, as performed in
the case of FPP. In terms of the electrostatics, the exis-
tence of a Zn–SL bond prompts the need to employ
B3LYP in the charge determination process. However,
in terms of coherence with the remaining parameteri-
zation, in particular of the FPP molecule, the farnesy-
lation product should ideally be described by HF/6–
31G*. Hence, a combined parameterization protocol
was designed. The full farnesylated product was added
to model Set 3, and the entire system was subjected
to single point energy calculations at both HF/6–31G*
and B3LYP/6–311++G(3df,2pd) levels. The charge val-
ues obtained from the HF/6–31G* calculation with the
RESP procedure for the isoprenoid part of the farn-
esylated product, were later fixed using RESP to com-
pute charges from the B3LYP/6–311++G(3df,2pd) cal-
culation for the remaining of the model, including the
cysteine of the peptidic part of the farnesylated product.

2.2 Parameters validation: molecular dynamics
simulations

The three sets of parameters developed were applied
to the four key states of the FTase catalytic pathway:
FTase resting state, binary complex (FTase–FPP), ter-
nary complex (FTase–FPP–Peptide), and product com-
plex (FTase–Product). The FTase resting state and
binary complex share the same Zn coordination sphere
with a bidentate aspartate residue [55,56,58], as param-
eterized for Set 1. For the FTase ternary complex several
pieces of evidence have indicated that the peptidic cys-
teine coordinates Zn as a thiolate and that Asp297β is
monodentate [55,56,102], in agreement with the param-
eters described in Set 2. For the product complex, the
existence of direct Zn-product coordination has been

Fig. 3 Schematic representation of the farnesyl diphosphate sub-
strate (FPP) and farnesylated product zinc coordinated with the
notation used in the parameterization process

suggested from the available crystallographic structures
[60,103], but failed to be confirmed in EXAFS studies
[55]. This finding was interpreted as indicative of the
existence of a weak Zn–product bond, undetectable by
EXAFS. This hypothesis was later confirmed by High-
level theoretical calculations and was taken into account
in the design of the parameters for Set 3.

The enzyme structures for the validation process were
prepared from the crystallographic structures with the
best resolution for each state: 1FT1 (Enzyme resting
state) [61]; 1FPP (binary complex FTase–FPP) [104];
1JCR (ternary complex FTase–FPP–Peptide) [59]; and
1KZP (product complex) [60]. The AMBER 8.0 [105]
molecular dynamics package was used in the entire pro-
cess. Conventional protonation states for all amino acids
at pH 7 were considered. All the hydrogens were added,
and Na+ ions were placed using the Leap program to
neutralize the highly negative charges (ranging from
−20 to −24) of the systems. The systems were then
placed in rectangular boxes containing TIP3P water
molecules, with a minimum distance of 15.0 Å of water
molecules between the enzyme and the box side. The
total number of atoms in each system was 139,531, 113,
054, 133,898, and 134,084, respectively for systems 1 to 4.

All systems were subjected to a four-stage refinement
protocol using the SANDER module of AMBER 8.0,
in which the constraints on the enzyme were gradually
removed. In the first stage (10,000 steps), 50 kcal mol−1

Å−2 harmonic forces were used to restrain the posi-
tions of all atoms in the systems except the ones from
the water molecules. In the second stage (10,000 steps)
these constraints were applied only to the heavy atoms,
and in the third stage (30,000 steps) were limited to
the CA and N atom-type atoms (backbone alpha car-
bons and nitrogens). This process ended in a full energy
minimization (fourth stage, maximum 80,000 steps) until
the rms gradient was smaller than 0.02 kcal mol−1.
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MD simulations on the four systems were carried
out using the SANDER module of AMBER 8.0, and
considering periodic boundary conditions to simulate
a continuous system. The SHAKE algoritm [106] was
applied to fix all bond lengths involving a hydrogen
bond, permitting a 2 fs time step. The Particle-Mesh
Ewald (PME) method [107] was used to include the
long-range interactions, and a non-bond-interaction cut-
off radius of 10 Å was considered. Following a 50 ps
equilibration procedure, 500 ps MD simulations were
carried out at 300 K, using Berendsen temperature cou-
pling [108] and constant pressure (1 atm) with isotro-
pic molecule-based scaling. This simulation time is large
enough to adequately sample the structural variables
that have been parameterized, as bond lengths and
angles possess a fast dynamics and no slow conforma-
tional rearrangements are possible to occur in the
parameterized region (neither are expected, based on
the available experimental structural data). Frequency
calculations on the models presented in Fig. 1 at the
B3LYP/SDD level, have rendered values for the bonds
and angles parameterized in this study ranging from
400 cm−1 to around 30 cm−1, implying frequency peri-
ods of between 0.1 ps (for bonds) and 1 ps (for the
angles). Hence, each Zn parameter is sampled at least
500 times during the overall MD simulation, with each
bond typically sampled around 5,000 times. The MD tra-
jectory was sampled every 0.2 ps. All of the MD results
were analyzed with the PTRAJ module of AMBER8.0,
with major emphasis being given to the Zn coordination
sphere in the four systems studied.

3 Results and discussion

3.1 Parameter determination

The bonding and angle parameters determined for the
three zinc coordination environments are presented in
Table 1. A total of 12 bonds and 18 angles were param-
eterized. Starting from the equilibrium geometries 60
scans were performed (2 for each parameter). Table 2
lists the RESP atomic charges calculated for the key
atoms in the Zn active-site. RESP atomic charges for the
remaining atoms in the three sets considered, and for the
FPP and farnesylated product molecules are presented
in the supporting information.

3.2 Validation studies

The parameters derived for the different Zn environ-
ments formed during farnesylation were tested in MD
simulations of the four key states of the FTase catalytic

Table 1 Bonding and angle parameters for protein farnesyltrans-
ferase (FTase)

Set 1 – FTase resting state and binary complex

Bonds Kr (kcal mol−1 Å−2) Req (Å)

ZF–OF 62.3 2.094
ZF–OG 43.8 2.159
ZF–NF 88.3 2.043
ZF–SF 115.8 2.258

Angles Kθ (kcal mol−1 rad−2) θeq (degrees)

OF–ZF–OG 318.9 63.5
OF–ZF–NF 16.7 107.3
OF–ZF–SF 16.5 126.6
OG–ZF–NF 19.4 97.0
OG–ZF–SF 15.4 136.9
NF–ZF–SF 16.2 114.5

Set 2 – FTase ternary complex

Bonds Kr (kcal mol−1 Å−2) Req (Å)

ZJ–OJ 88.3 1.999
ZJ–SJ 81.2 2.352
ZJ–NJ 62.6 2.129
ZJ–SR 69.3 2.373

Angles Kθ (kcal mol−1 rad−2) θeq (degrees)

OJ–ZJ–NJ 27.8 100.2
OJ–ZJ–SJ 23.0 114.0
OJ–ZJ–SR 24.1 115.1
SJ–ZJ–NJ 20.7 110.1
SJ–ZJ–SR 27.3 116.0
NJ–ZJ–SR 39.1 98.8

Set 3 – FTase product complex

Bonds Kr (kcal mol−1 Å−2) Req (Å)

ZK–OK 85.3 1.977
ZK–SK 108.3 2.280
ZK–NK 84.8 2.055
ZK–SL 26.6 2.660

Angles Kθ (kcal mol−1 rad−2) θeq (degrees)

OK–ZK–NK 18.8 108.2
OK–ZK–SK 15.2 127.6
OK–ZK–SL 24.6 92.3
SK–ZK–NK 12.6 118.7
SK–ZK–SL 16.8 101.6
NK–ZK–SL 22.1 99.1

mechanism: FTase resting state, binary complex (FTase–
FPP), ternary complex (FTase–FPP–Peptide) and
product complex (FTase–Product). Table 3 lists the
average values from the MD simulations performed for
the bonds and angles parameterized, considering the
instantaneous values collected at every 0.2 ps (after the
initial 100 ps). Figure 4 represents the variation in time
of the bonds and angles parameterized in the four states
considered.
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Table 2 RESP Charges for the key atoms in the active-site of
FTase

Atom type Charge

Set 1 – FTase resting state and binary complex
ZF 0.9091
OF −0 .6476
OG −0 .9126
NF −0 .3587
SF −0 .6025

Set 2 – FTase ternary complex
ZJ 0.8019
OJ −0 .6620
SJ −0 .6497
NJ −0 .0218
SR −0 .6671

Set 3 – FTase product complex
ZK 0.4213
OK −0 .4757
SK −0 .5959
NK −0 .0102
SL −0 .3269

Table 4 presents the average root-mean-square devi-
ation (RMSd) for the backbone Cα atoms (CA) and for
the zinc coordination sphere atoms (Zn Core). The Zn
Core was defined in analogy with the models described
in Fig. 1. Figure 5 illustrates the CA and Zn Core RMSd
variation with time in the four states considered. From
Table 4 and Figs. 4 and 5 it is obvious that the geometry
of the three Zn coordination spheres was maintained
very well for the entire simulation time.

To check the validity of the parameters developed,
a full-scale comparison of the average Zn bond-lengths
obtained from the MD simulations, with EXAFS data
[55], a total of 14 X-ray crystallographic structures, and
quantum chemical results with small (up to 44 atoms
at the B3LYP/SDD level) and larger models (ranging
120–133 atoms at the B3LYP/SDD:PM3 level) [56,57]
was performed. The results are summarized in Fig. 6,
with major emphasis being given to the EXAFS data,

Table 4 Root-mean-square deviation (RMSd) summary of the
simulations performed (after the initial 100 ps)

RMSd (Å) Resting Binary Ternary Product
state complex complex complex

CA 1.4 ± 0.2 1.2 ± 0.1 1.1 ± 0.1 1.3 ± 0.2
Zinc core 0.27 ± 0.05 0.39 ± 0.07 0.74 ± 0.09 0.22 ± 0.06

the most precise data available, as the existing X-ray
structures have almost all resolutions poorer than 2 Å .
From Fig. 6 the excellent agreement between the MD
results with the newly developed parameters and the
experimental and quantum chemical results is evident.
The agreement with experimental data is remarkable, in
particular taking into consideration that the values for
the bonds-lengths and angles parameterized were taken
from the small quantum chemical active-site models.
In fact, the MD simulations performed yielded results
than are in most of the cases better than the X-ray
results themselves, and are in closer agreement with the
EXAFS data and the higher-quality X-ray structures.

A very simple earlier attempt to analyze FTase using
MD, employed the ingenious cationic dummy atom
approach [109]. This method does not take into account
covalent bonds or harmonic constraints at the Zn com-
plex. Instead, the Zn atom is substituted by four cat-
ionic dummy atoms tetrahedrically placed around the
Zn nucleus, imposing a tetrahedral coordination geom-
etry to the complex. Success was naturally limited by the
drastic approaches considered [109–112]. The method
requires ligands in the first coordination sphere to be
deprotonated to negatively charged species not to lose
contact with the dummy atoms introduced. In addition
to this, the negatively charged second-sphere ligands
normally have to be protonated as to avoid attack at
the charged dummy atoms.

The present full set of FTase tailor-made MD param-
eters here introduced allow an effective modeling of

Table 3 Average values and
standard deviations for the
parameterized bond-lengths
and angles calculated from
the MD runs after the first
100 ps

Resting state Binary complex Ternary complex Product complex

Average bonds-lengths ± deviation (Å)
ZF–OF 2.06 ± 0.06 ZF–OF 2.09 ± 0.06 ZJ–OJ 1.95 ± 0.06 ZK–OK 1.95 ± 0.06
ZF–OG 2.15 ± 0.07 ZF–OG 2.13 ± 0.07 ZJ–SR 2.44 ± 0.07 ZK–SL 2.6 ± 0.1
ZF–SF 2.23 ± 0.05 ZF–SF 2.24 ± 0.05 ZJ–SJ 2.36 ± 0.06 ZK–SK 2.28 ± 0.06
ZF–NF 2.02 ± 0.06 ZF–NF 2.03 ± 0.06 ZJ–NJ 2.19 ± 0.07 ZK–NK 2.08 ± 0.06

Average angles ± deviation (degrees)
NF–ZF–SF 119 ± 5 NF–ZF–SF 114 ± 6 NJ–ZJ–SR 99 ± 4 OK–ZK–NK 111 ± 6
OF–ZF–NF 101 ± 6 OF–ZF–NF 102 ± 7 OJ–ZJ–NJ 110 ± 5 OK–ZK–SK 118 ± 6
OF–ZF–OG 64 ± 1 OF–ZF–OG 63 ± 1 OJ–ZJ–SJ 113 ± 5 OK–ZK–SL 87 ± 5
OF–ZF–SF 123 ± 6 OF–ZF–SF 124 ± 6 OJ–ZJ–SR 102 ± 7 SK–ZK–NK 125 ± 5
OG–ZF–NF 81 ± 4 OG–ZF–NF 80 ± 5 SJ–ZJ–NJ 118 ± 5 SK–ZK–SL 101 ± 6
SF–ZF–OG 84 ± 6 SF–ZF–OG 83 ± 6 SJ–ZJ–SR 112 ± 5 NK–ZK–SL 103 ± 5
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Fig. 4 Plots of the molecular
dynamics (MD) cumulative
averages for all bonds and
angles parameterized for the
Zn Coordination Spheres in
the FTase resting state, binary
complex, ternary complex,
and product complex,
calculated after the initial
100 ps of simulation

Fig. 5 Graphic
representations of the
root-mean-square deviation
(RMSd) variation in the MD
simulations performed for the
four systems considered:
FTase resting state, binary
complex, ternary complex,
and product complex. The Zn
Core RMSd refers to the
RMSd values for the atoms in
the Zn respective
coordination sphere
throughout the simulation
protocol
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Fig. 6 Parameter validation comparison of results obtained by
MD simulation (using the parameters developed) against EXAFS
data, quantum calculations with small (up to 44 atoms) and larger

(ranging from a total of 120–133 atoms) models (QC Small and
QC Large), and 14 X-ray crystallographic structures (PDB code,
resolution indicated in parentheses)

the four key-states of the FTase catalytic pathway with
notable accuracy, in agreement with X-ray and EXAFS
experimental evidence, and with the data obtained from
high-level quantum studies on small active-site models.
Altogether, the parameters derived comprise a power-
ful tool to an integrated dynamic analysis of the sev-
eral states formed during the farnesylation mechanism,
opening the way to a full understanding of the FTase
activity.

4 Concluding remarks

Three sets of parameters specifically designed to account
for the several changes that take place at the Zn

coordination sphere in the FTase catalytic mechanism
have been derived through a combination of theoreti-
cal calculations and experimental data, taking into con-
sideration the most recently reported mechanistic facts
and the novel views on the FTase catalytic mechanism.
These parameters were applied with great success in
MD simulations of the four different key states of the
FTase catalytic mechanism – FTase resting state, binary
complex (FTase–FPP), ternary complex (FTase–FPP–
Peptide), and product complex (FTase–Product) – and
extensively validated against EXAFS data, a total of 14
X-ray crystallographic structures, and high-level quan-
tum calculations with two types of models of different
sizes.
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The collection of parameters here presented consti-
tute a global framework that allows the stable and coher-
ent MD study of the several key intermediates formed
during the FTase catalytic pathway, and opens the door
to a full scale integrated analysis of the several aspects
involved in the farnesylation process, and to a deeper
understanding of the elusive nature of the FTase cata-
lytic and inhibition pathways.
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